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Some difficulties that may occur in crystal structure analysis by direct methods are described. The use 
of exclusively large E values produces an 'amplitude termination effect' in the E map. This leads to the 
occurrence of spurious peaks, which enhance any elements of translational symmetry present in the 
structural motif. There is also a danger that an analysis based on exclusively large E values will lead 
not to the correct structure but to a pseudo-homometric variant. 

Introduction 

Direct methods of crystal structure analysis make use 
of relationships among the observed structure ampli- 
tudes to assign or place limitations on the corresponding 
phase angles without any explicit assumptions con- 
cerning the atomic positions. However, at some stage 
or another an approximately correct set or subset of 
atomic positions has to be recognized in the Fourier 
syntheses (E maps) based on the derived phase angle 
or sign relationships in order for further progress to 
be made. Although the usefulness of direct methods 
has been amply demonstrated during the last few years, 
the difficulties that may arise at this recognition stage 
do not seem to have been adequately discussed. In 
most published accounts of successful applications the 
authors simply state that a chemically plausible struc- 
ture was recognized in a particular synthesis and pro- 
ceed to describe the further refinement of the structure. 

Our own experience has indicated that while direct 
methods often lead in a fairly straightforward manner 
to the correct structure this is not always the case; in 
several analyses the recognition of the chemically 
plausible structure has been far from obvious. Some- 
times so many plausible structures have been recog- 
nizable that alternative, non-direct methods have had 
to be invoked to settle the matter; sometimes structures 
have been 'recognized' and shown only later to be in- 
correct. These difficulties have tended to be encoun- 
tered in the case of quite simple crystal structures, 
especially those containing structural elements with a 
high degree of internal regularity (benzene rings, etc.). 
They always arise because there are too many peaks in 
the E-Fourier synthesis, never because there are too 
few. 

Amplitude termination effect 

In any method of direct phase determination we must 
expect that reliable phase assignments will be possible 
only for the larger E values. Consequently, even if the 
phases assigned to the coefficients in an E-Fourier 
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synthesis are all correct, the resulting distribution will 
be affected by omission of the smaller coefficients. In 
essence, all coefficients smaller than some limiting 
value are set equal to zero in the synthesis, and we may 
speak of an amplitude termination effect, which will 
operate in addition to the usual series termination 
effect that is implicit in E maps. 

Although we are unable at present to offer a general 
analysis of the amplitude termination effect, it seems 
worthwhile to draw attention to some of its features. 
It will be particularly severe for structures containing 
several coincident or nearly coincident interatomic 
vectors in the asymmetric structural unit. Such struc- 
tures may be described as possessing translational 
regularities, and their Patterson functions contain over- 
lapping peaks. It has been shown (Hauptman & Karle, 
1955, 1959; Cochran, 1958) that the simpler sign and 
phase determining relationships do not hold rigorously 
under these circumstances, but they are expected to 
hold approximately. We have calculated E maps for a 
number of centrosymmetric model structures contain- 
ing translational regularities and are led to the follow- 
ing rule: the use of exclusively large E values (Fourier 
coefficients) produces an E map (Fourier synthesis) 
containing spurious peaks, which overemphasize any 
translational regularities that may be present in the 
actual structural motif. 

Some insight into the origin of the spurious peaks may 
be gained by considering a very simple one-dimensional 
model, a set of atoms occupying most, but not all, of 
the finite set of points x,=m,/p within a repeating 
structure of periodicity unity (m, and p are integers, 
m,<p; we could take m,=0 ,  1, 2, 4, 5, 6, 8, 9; p =  10). 
The structure factor Fn and the normalized structure 
factor En = FH(F2) -1/2 of such a motif are large only for 
H=np (n integer) i.e. only at the reciprocal-lattice 
points corresponding to a direct lattice with a =p-1. A 
Fourier synthesis (or E map) calculated only with these 
values of FH (or EH) will then have maxima not only at 
the positions of the atoms contained in the model but 
also at the positions of the 'missing' atoms. 

An actual one-dimensional example occurs in the 
structure of dimethyltriacetylene (Jeffrey & Rollett, 
1952) where the carbon atoms lie on a threefold axis 
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(00z) ofa rhombohedral cell with z = + 0.1335, + 0.2494, 
+ 0-3441, + 0.4526, i.e. approximately at z = (2n + 1)/20 
with n = + 1, +_ 2, + 3, + 4. An E map calculated only 
with terms with. [El >2 (/=0,10) shows a spurious peak 
at z = + 0.05 of height equal to that of the other atoms. 
Inclusion of terms with [El > 1"5 (/=0,9,10) reduces the 
height of the spurious peak to about 90% of that of the 
lowest authentic peak. 

Multiple solutions of phase problem 

The enhancement, by the amplitude termination effect, 
of elements of translational regularity in a structural 
motif occurs even if the phases or signs associated with 
the large E coefficients are correct. There is a further 
difficulty in that as soon as an appreciable degree of 
translational regularity is present, it may be difficult, 
or even virtually impossible, to distinguish the correct 
structure from a number of 'pseudo-homometric' 
alternatives by direct methods alone. 

Consider the two repetition patterns A and B shown 
in Fig. 1 ; B represents the superposition of A displaced 
by +d/2 and -d /2 ,  each displacement having half 
weight. The peaks in B at 0, + d therefore have single 
weight and those at + 2d have half weight. The Fourier 
transform of A and B are very different but the distri- 
butions of [El for the two structures are very similar, 
especially in the regions of reciprocal space close to 
H = n d  -1, where [El is close to its maximum value. 
Allowing for some experimental error in the IEI values, 
it is clear that any analysis based exclusively on the 
large IEI values (say IEI > 1) can hardly distinguish be- 
tween the two structures, wkich may be described as 
pseudo-homometric since their Patterson functions, 
although different, are virtually identical if computed 
exclusively with. large values of En 2. 

The essential distinction between the E(H) functions 
corresponding to the structures A and B concerns the 
sign of the functions in regions close to H =  nd -1 with n 
odd; negative for A, positive for B. This sign cannot be 
determined from sign relationships involving exclu- 
sively large IEI values. The sign ambiguity is analogous 
to that occurring for groups of reflexions with odd 
indices in centrosymmetric triclinic structures where one 
choice may lead to an essentially correct E map, the 
other to an E map representing a pseudo-homometric 
structure. 

As the number of peaks in the repetition patterns 
A and B increases, the differences between IEA(H)I 
and IEB(H)I become smaller and smaller until, in the 
limit of infinite repetition, the I E(H)[ functions are iden- 
tical. In this case the distinction between the two pat- 
terns depends only on the arbitrary choice of origin - at 
a peak in A, or midway between peaks in B. 

In the course of the structure analysis of p-methyl 
benzylidene-p-nitroaniline (Biirgi & Dunitz, 1969; 
Biirgi, 1969), space group P21/c, direct methods led to 
an incorrect choice for one of the symbolic signs; in the 
resulting E map we were able to recognize two 'half- 

weight' molecules separated by one of the multiply 
occurring interatomic vectors. The correct solution 
proved to be the average of the two 'half-weight' mole- 
cules. A similar case has been reported by Duffin 
(1968), and it also seems likely that the difficulties 
described in the analysis of p,p'-bitolyl (Casalone, 
Mariani, Mugnoli & Simonetta, 1969) were of a similar 
nature. 

Conclusion 

Many organic molecules contain structural sub-units 
that are repeated by translational displacements e.g. 
long-chain paraffins, fatty acids, polyenes, aromatic 
systems containing planar hexagons, etc. If direct 
methods are used to solve the structures of crystals 
containing strong translational regularities, the am- 
plitude termination effect may lead to difficulties in the 
interpretation of E maps based exclusively on large E 
values. For example, although the E map may show 
the orientation of a planar zigzag chain quite clearly, 
spurious peaks will tend to mask the terminations of the 
chain, which may, indeed, appear in the E map as 
being infinite in length. Even if the actual length of the 
chain is known from chemical information, its position 
in the unit cell may be difficult, or impossible, to deduce 
from the E map. In particular the E map may show a 
double image of the chain, the two images mutually 
displaced by some interatomic distance within the 
chain to produce a structure bearing a pseudo-homo- 
metric relation to the correct one. 

There appear to be two ways out of these difficulties. 
One way is to extend the use of the sign or phase 
determining relationships to derive signs or phase 
angles asseciated with the smaller E values. This will 
get rid of the amplitude termination effect. However, 
once an incorrect sign or phase assignment has been 
made for some sub-set of the stronger reflexions, there 
is no guarantee th.at the mistake will reveal itself 
during the extension to smaller E values. The result 
may be an E map in which the molecule is in correct 

A l l l l _  
~d~, 

, , I  I ,  .... 0 

- I  

- 2  

E 

/ 
, / 

0 d - I  

Fig. 1. Repetition patterns A and B. B represent the superposi- 
tion of A displaced by + d/2, each displacement having half 
weight. The peaks in B at 0, +d have single weight and 
those at _+ 2d have half weight. 
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orientation but wrongly placed with respect to any 
symmetry elements that may be present in the unit cell. 
An incorrect structure of this kind may well refine 
reasonably satisfactorily into a false least-squares 
minimum; in general, however, it will correspond to 
unreasonable intermolecular distances. The second way 
is to try to establish the position of the molecule from 
the Patterson function calculated with the full set of 
reflexions. For regularly built structural motifs of 
known shape and in known orientatien, this should 
not, in general, present severe difficulties. 

The main danger is likely to occur from the use of 
fully automatized procedures for sign or phase deter- 
mination, combined with automatic peak searches for 
trial models. These procedures may well lead not to the 
correct structure but to some pseudo-homometric va- 

riant, which may only be recognized as such after 
considerable expenditure of computer time, if at all. 

We are grateful to Dr O. Ermer for helpful discussion. 
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A derivation of the geometrical distribution of multiply diffracted X-ray beams in single crystals is pre- 
sented. Included is a brief survey of the geometrical and analytical methods, with some new concepts 
and constructions, which are useful in the interpretation and prediction of X-ray multiple diffraction 
phenomena. Applications include the analysis of Kossel patterns, calculation of angles of diffraction, 
and precision determination of lattice parameters and wavelengths, for which appropriate formulae and 
procedures are given. 

1. Introduction 

The phenomena associated with the simultaneous dif- 
fraction of an X-ray beam by more than one Bragg 
plane in a crystal have long been known (Renninger, 
1937; Berg, 1926). In most instances their presence con- 
stitutes an undesirable complication, as for example in 
the measurement of diffraction intensities from single 
crystals, and therefore many workers have attempted 
to avoid their occurrence (Coppens, 1968; Zocchi & 
Santoro, 1967). Several authors have found, however, 
that these effects have a variety of useful applications 
to the study of single crystals, and for this reason it is 
necessary to know the directions of singly- and mul- 
tiply-diffracted X-ray beams in crystals. In the analysis 
of Kossel patterns (Kossel & Voges, 1935) the points 
of intersection between diffraction and deficiency conics 
locate the doubly-diffracted beams and their relation- 
ships are used to determine the lattice parameters of 
the crystal. Of particular value are those cases in which 
two or more doubly-diffracted beams are separated by 
a very small angle (Mackay, 1965). The great accuracy 
of absolute angular measurement possible with very 
small angles yields the most precise values of the lattice 

parameters. This principle has been used to measure 
the lattice parameter of diamond by Lonsdale (1947), 
and of silicon by Isherwood & Wallace (1966). The ef- 
fect of arsenic incorporation on the germanium lattice 
has also been studied (Isherwood & Wallace, 1970). 
The theoretical basis of this method is the principal 
subject of the present paper. 

Also of considerable interest are cases of systematic 
triple or multiple diffraction, the occurrence of which 
is independent of wavelength and is governed only by 
crystal symmetry. Thus if the symmetry is disturbed by 
a homogeneous distortion of the lattice, the resulting 
modifications to the geometry of the doubly-diffracted 
beams enable the distortion to be measured and anal- 
ysed. This has been demonstrated by Isherwood (1968) 
in a study of the surface layers of yttrium iron garnet 
crystals. The theory of this method will be described in 
a separate paper. 

2. The geometrical interpretation of multiple diffraction 

In order to predict the occurrence of multiply-diffracted 
beams and to calculate their angular relationships to 
the crystal lattice, a review of the geometry of diffrac- 


